Specific Intracellular Uptake of Herceptin-Conjugated CdSe/ZnS Quantum Dots into Breast Cancer Cells

نویسندگان

  • Seung-Jin Han
  • Pierson Rathinaraj
  • Soo-Young Park
  • Young Kyoo Kim
  • Joon Hyung Lee
  • Inn-Kyu Kang
  • Jong-Sik Moon
  • Jeffrey G. Winiarz
چکیده

Herceptin, a typical monoclonal antibody, was immobilized on the surface of CdSe/ZnS core-shell quantum dots (QDs) to enhance their specific interactions with breast cancer cells (SK-BR3). The mean size of the core-shell quantum dots (28 nm), as determined by dynamic light scattering, increased to 86 nm after herceptin immobilization. The in vitro cell culture experiment showed that the keratin forming cancer cells (KB) proliferated well in the presence of herceptin-conjugated QDs (QD-Her, 5 nmol/mL), whereas most of the breast cancer cells (SK-BR3) had died. To clarify the mechanism of cell death, the interaction of SK-BR3 cells with QD-Her was examined by confocal laser scanning microscopy. As a result, the QD-Her bound specifically to the membrane of SK-BR3, which became almost saturated after 6 hours incubation. This suggests that the growth signal of breast cancer cells is inhibited completely by the specific binding of herceptin to the Her-2 receptor of SK-BR3 membrane, resulting in cell death.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fluid phase endocytic uptake of artificial nano-spheres and fluorescent quantum dots by sycamore cultured cells: evidence for the distribution of solutes to different intracellular compartments.

Fluid phase endocytic uptake of external solutes in plant cells was further substantiated using artificial polystyrene nano-spheres (40 nm) and CdSe/ZnS quantum dots (20 nm). Both types of artificial nano-particles were taken up by sycamore-cultured cells. However, whereas polystyrene nano-spheres were delivered to the central vacuole, CdSe/ZnS nano-dots were sequestered into cytoplasmic vesicu...

متن کامل

Comparative Studies of High Contrast Fluorescence Imaging Efficiency of Silica-coated CdSe Quantum Dots with Green and Red Emission

Herein we report the possibility of using green and red emitting silica-coated cadmium selenide (CdSe) quantum dots (QDs) for remarkable stem and cancer cellular imaging, efficient cellular uptake and fluorescence imaging of semi and ultra-thin sections of tumor for in vivo tumor targeted imaging applications. The comparative studies of high contrast cellular imaging behaviours of the silica-co...

متن کامل

P-156: A Study about Toxicity of CdSe Quantum Dots on Male Sexual System of Mice and Controlling This Toxicity by ZnS Coverage in Immature Mice

Background: Quantum dots are commonly composed of cadmium contained semiconductors. Cadmium is potentially hazardous but toxicity of such quantum dots is not yet systematically investigated. On the other hand, in vitro studies have shown almost complete control of CdSe induced cytotoxicity by ZnS coverage. Toxicity of CdSe quantum dots and controlling this toxicity by ZnS coverage in immature m...

متن کامل

Power and Wavelength Dependence of Photoenhancement in (CdSe)ZnS-Dopamine in Aqueous Solution and Live Cells

(CdSe)ZnS-Dopamine. Photoluminescence. Photoenhancement. Living Cell CdSe(ZnS) quantum dots conjugated to the electron donor dopamine show enhancement of photoluminescence over a time course of seconds to minutes when exposed to ultraviolet or blue irradiation. This phenomenon is observed when the dots are in aqueous solution as well as after endocytosis by living cells. The rate of enhancement...

متن کامل

Uptake and processing of semiconductor quantum dots in living cells studied by fluorescence lifetime imaging microscopy (FLIM).

Carboxylate-terminated and dopamine-conjugated CdSe-ZnS quantum dots (QDs) are imaged in living fibroblasts using fluorescence lifetime imaging microscopy. Changes in lifetime are observed as the QDs are processed in the cells, and are consistent with lifetime measurements in bulk solution using buffers compositions that correspond to different cellular regions.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 2014  شماره 

صفحات  -

تاریخ انتشار 2014